domingo, 18 de octubre de 2009

IceCube; "El telescópio"


Después de ensayos a menor escala en la Antártida y el lago Baikal, ha entrado en construcción este telescopio, con un volumen cercano a un kilómetro cúbico de hielo, en que se detectará la luz producida por neutrinos de muy alta energía, gracias al efecto Cherenkov. Se espera terminarlo el 2011 y detectar cerca de 1000 neutrinos por día y más de 350 000 al año (Como comparación, el mayor telescopio de neutrinos en activo detecta 11 000 al año), con una precisión y resolución nunca antes alcanzadas.
Los neutrinos son partículas elementales, primero propuestas como hipótesis por el físico teórico Wolfgang Pauli en 1931 para explicar la radioactividad de ciertas substancias. No fueron descubiertas experimentalmente hasta 1955.


Los neutrinos son producidos en reacciones nucleares y en interacciones entre otras partículas subatómicas. Son eléctricamente neutros y tienen una masa muy pequeña, aproximadamente una billonésima parte de la masa del núcleo más ligero que existe, el Hidrógeno. E interaccionan muy debilmente con la materia ordinaria.

Pero hay otras fuentes de neutrinos en el Universo en las que otros físicos hemos puesto nuestra atención: los fenómenos más violentos conocidos en el cosmos. Se trata de galaxias con agujeros negros supermasivos en su centro que están tragando materia continuamente, o las misteriosas explosiones de rayos gamma que los telescopios a bordo de satélites vienen detectando desde los años 60, sin que hasta el momento sepamos que mecanismos los provocan, pero de las que sabemos que durante unos pocos segundos brillan más que toda una galaxia.


Ice Cube: El telescopio más grande del mundo
Para detectar neutrinos poducidos en el entorno de agujeros negros lejanos o de explosiones de rayos gamma, un equipo de científicos europeos y norteamericanos comenzó a construir un prototipo de telescopio de neutrinos en 1994 en la Antártida, el telescopio llamado AMANDA, siglas de su nombre en inglés, Antarctic Muon and Neutrino Detector Array.


Es la primera vez que se construye un detector de este tipo, y los ocho años que lleva en funcionamiento han servido para demostrar que la tecnología de construcción es factible y el funcionamiento prolongado del aparato es posible. En el verano austral de 2004 se comenzó a construir la extensión de AMANDA, llamada IceCube.


Los neutrinos se detectan de forma indirecta: cuando un neutrino interacciona con un átomo en el hielo, se produce una partícula elemental llamada muón, con una velocidad proporcional a la energía del neutrino que la produjo.


Al atravesar el hielo, los muones emiten un destello de luz azulada (llamado técnicamente efecto Cherenkov), y es ésta luz la que se detecta con unos sensores de luz enterrados en el hielo. A partir de ahí se puede reconstruir la dirección que traía el neutrino original.


IceCube tendá unos 5.000 sensores ópticos enterrados entre 1.5 y 2.5 kilómetros bajo la superficie. La forma de posicionar los sensores es conceptualmente simple, pero tecnicamente compleja: con una gruesa manguera se inyecta un chorro de agua caliente a presión, que va derritiendo el hielo, creándose así un agujero de unos 60 centímetros de diámetro.


Cuando se alcanza una profundidad de dos kilómetros y medio, en lo que se tarda unos dos días, se retira la manguera y se baja un cable al que van acoplados los sensores de luz. El agua del agujero se deja congelar de nuevo, quedando los sensores fijos en su posición final.


IceCube consistirá en 80 de estos cables con sensores, cada cable separado unos 125 metros de sus vecinos inmediatos, con 60 sensores acoplados a cada cable. El conjunto de sensores cubrirá un volúmen total de 1 kilómetro cúbico.


Las señales eléctricas que producen los sensores al detectar los destellos de luz de una interacción de un neutrino, se transmiten a un laboratorio en la superficie a través del cable, en dónde son recibidas por una serie de ordenadores y son guardadas en cinta magnética para su posterior análisis por los físicos.


El trabajo en la Antártida
Cualquier operación en la Antártida es compleja, dado el aislamiento del lugar, las condiciones extremas de clima y el acceso restringido. La base Amundsen-Scott está servida a diario por vuelos de abastecimiento desde la base de McMurdo, en la costa antártica, cuando el tiempo lo permite. No es inusual quedar aislado durante unos días debido a las adversas condiciones climáticas que impiden el aterrizaje de los aviones.


Todo el equipo necesario para construir el detector tiene que caber en la bodega de los aviones Hercules C30 que hacen el trayecto de tres horas desde la costa hasta el Polo Sur. Y los trabajos de construcción sólo pueden ser llevados a cabo entre noviembre y febrero cada año, cuando la base se abre a los científicos, ingenieros y técnicos. Esta es la principal razón por la que la construcción de IceCube se demorará durante seis años.


Entre febrero y noviembre la base permanece cerrada al exterior. Solamente unas pocas personas permanecen en ella durante el invierno austral para encargarse de que los diversos experimentos que se llevan a cabo en el Polo Sur funcionen correctamente.


AMANDA ha producido interesantes resultados científicos en sus seis años de existencia, aunque no ha detectado neutrinos provenientes de agujeros negros o explosiones de rayos gamma. El flujo de neutrinos que se espera de tales objetos es demasiado débil para que un detector del tamaño de AMANDA pueda detectarlos. Por eso esperamos que con IceCube, con un volúmen unas 60 veces mayor que AMANDA, podamos en unos pocos años “ver” el Universo en neutrinos.


Teoría de la Supersimetría
Pero la astrofísica no es el único campo en el que un detector como AMANDA/IceCube puede ser útil. Sabemos que el 99% de la materia del Universo es invisible, aunque no sabemos todavía de qué tipo de materia se trata. No puede ser materia compuesta por las partículas habituales, protones y neutrones, ya que eso entraría en contradicción con ciertas observaciones de las abundancias de elementos en el universo primitivo, que ponen límites estrictos a la cantidad total de materia “normal” que puede existir.


Hay teorías en física de partículas elementales, como la teoría de Supersimetría, que proponen la existencia de nuevas partículas estables, supervivientes del Big Bang, y todavía no detectadas. De acuerdo con estas teorías, tales partículas se podrían acumular por el efecto de la gravedad en el interior del Sol o de la Tierra, y debido esta acumulación podrían interaccionar entre ellas, dando lugar a neutrinos.


La detección de un flujo de neutrinos de alta energía proveniente del Sol o del centro de la Tierra sería un buen indicio de que la teoría de Supersimetría es correcta, y sería un complemento a los estudios que sobre ella se van a llevar a cabo en la siguiente generacion de aceleradores de partículas en el CERN, en Ginebra, y Fermilab, en Chicago.


Y hay otras teorías de física de partículas que también pueden ser puestas a prueba con IceCube, como teorías que describen el espacio-tiempo con más dimensiones que las cuatro a las que estamos habituados desde que Einstein introdujo su teoría de la relatividad. En tales teorías las interacciones de los neutrinos con la materia ordinaria se verían modificadas con respecto a lo que suponemos hasta ahora, y IceCube detectaría un comportamientoanormal en las interacciones de los neutrinos que espera medir.


Todos estos aspectos hacen que los telescopios de neutrinos sean unos instrumentos muy versátiles, con posibilidad de contribuir a muy diversos aspectos de la física, desde astrofísica y cosmología a la física de partículas, y hace que los científicos que participamos en el proyecto estemos realmente expectantes de lo que nos traerá el abrir esta nueva ventana al Universo que es la detección de neutrinos de alta energía.

Fuente: Ice cube

0 comentarios:

Publicar un comentario